The function f(θ)=ddθ∫θ0dx1−cosθcosx satisfies the differential equation
A
dfdθ+2f(θ)cotθ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
dfdθ−2f(θ)cotθ=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dfdθ+2f(θ)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
dfdθ−2f(θ)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Adfdθ+2f(θ)cotθ=0 f(θ)=ddθ∫θ0dx1−cosθcosx ⇒f(θ)=11−cosθddθ(θ)−11−cosθddθ(0) ⇒f(θ)=1sin2θ .....(1) Differentiating w.r.t θ, we get ⇒ddθf(θ)=−2sin3θcosθ ⇒ddθf(θ)=−2f(θ)cotθ ⇒ddθf(θ)+2f(θ)cotθ=0