The correct option is B 1
f(x)=xex−x2
f′(x)=ex−x2+xex−x2(1−2x)=ex−x2(1+x−2x2)
f′′(x)=((1+x−2x2)(1−2x)+(1−4x))ex−x2
For minima or maxima of f(x)
f′(x)=0=ex−x2(1+x−2x2)⇒x=−1/2,1
clearly f′′(1)<0 and f′′(1)>0 hence at x=1, f will achieve its maximum value
which is 1