The function f(θ)=ddθ∫θ0dx1−cosθcosx satisfies the differential equation
f(θ)=ddθ∫θ0dx1−cosxcosθ ⇒f(θ)=dθdθ[11−cos2θ]=cosec2θ ⇒dfdθ=2cosecθ(−cosecθcotθ) ⇒dfdθ=−2cosec2θcotθ ⇒dfdθ=−2f(θ)cotθ ⇒df(θ)dθ+2f(θ)cotθ=0