wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The function f is defined as f(x)=x2+ax+b,if0x<23x+2,if2x42ax+5b,if4<x8 , If f is continuous in [0,8] find the values of a and b.

Open in App
Solution

Given,
f(x)=x2+ax+b,if 0x23x+2,if 2x42ax+5b,if 4x8

Given, f(x) is continuous in [0,8].

f(x) is continuous at x=2 and x=4.

At x=2, we have

limx2f(x)=limh0f(2h)=limh0[(2h)2+a(2h)+b]=4+2a+b

limx2+f(x)=limh0f(2+h)=limh0[3(2+h)+2]=8

limx2f(x)=limx2+f(x)

4+2a+b=8

2a+b=4.....(1)

Also, at x=4

limx4f(x)=limh0f(4h)=limh0[3(4h)+2]=14

limx4+f(x)=limh0f(4+h)=limh0[2a(4+h)+5b]=8a+5b

limx4+f(x)=limx4f(x)
8a+5b=14.....(2)

Solving equation (1) and (2), we get
a=3 and b=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon