The correct option is A An even function
f(x)=xex−1+x2+1f(x)=2x+x(ex−1)+2(ex−1)2(ex−1)=2x+xex−x+2ex−22(ex−1)f(−x)=−2x−xe−x+x+2e−x−22(ex−1)f(−x)=−2x−xex+x+2ex−22(1ex−1)f(−x)=−2xex−x+xex+2−2ex2(ex−1)f(−x)=−xex−2ex−x+22(ex−1)f(−x)=xex+2ex+x−22(ex−1)f(−x)=f(x)∴Evenfunction.