The correct option is
A An even function
f(x)=∫x0log(1−x1+x)dx ........... (i)Let g=log(1−x1+x) and h′=1
Using integration by parts,
∫gh′=gh−∫g′h ....... (ii)
g′=1+x1−xddx(1−x1+x)
=1+x1−x×(−(1+x)−(1−x)(1+x)2)
=(1+x)(1−x)×(−1−x−1+x(1+x)2)
=(1+x)(1−x)×(−2(1+x)2)
=−2(1+x)(1−x)
∴g′=2(x+1)(x−1) and h=x
Form (ii), we have
∫log(1−x1+x)dx
=xlog(1−x1+x)−∫2x(x+1)(x−1)dx
=xlog(1−x1+x)−∫1(x+1)dx−∫1(x−1)dx
=xlog(1−x1+x)−log(x+1)−log(x−1)
=xlog(1−x1+x)−log|x2−1|
∴∫x0log(1−x1+x)dx
=xlog(1−x1+x)−log|x2−1|
∴f(x)=xlog(1−x1+x)−log|x2−1|
Now, ∴f(−x)=−xlog(1+x1−x)−log|x2−1|
=xlog(1−x1+x)−log|x2−1|=f(x)
Thus, f(−x)=f(x)
Hence, f is an even function.