The correct options are
B Continuous at non integral points
D Discontinuous at integral points
Let
x=n,n∈ZThen, L.H.L.=limx→n;x<n(x)=n;R.H.L.=limx→n;x>n(x)=n+1
Since, L.H.L.≠R.H.L., therefore f(x) is discontinuous at all integers n.
Now, let x=p,n<p≤n+1, where n is an integer.
Then, L.H.L.=limx→p;x<p(x)=n+1
R.H.L.=limx→p;x>p(x)=n+1
f(p)=(p)=n+1
Since, L.H.L.=R.H.L.=f(p),
therefore, f(x) is continuous at all non-integral points p.