The correct option is A R - {−1,1}
f(x)=limn→∞cos(2πx)−x2nsin(x−1)1+x2n+1−x2n
For |x|<1,f(x)=cos2πx, continuous function
|x|>1,f(x)=limn→∞1x2ncos2πx−sin(x−1)1x2n+x−1
=−sin(x−1)x−1 , continuous
For |x|=1,f(x)={1if x=1−(1+sin2)if x=−1
Now,
limx→1+f(x)=−1,limx→1−f(x)=1, so
discontinuous at x = 1
limx→−1+f(x)=1,limx→−1−=−sin22, so
discontnuous at x = -1
∴f(x) is continuous for all x∈R−{−1,1}