The correct option is A many-one and into
For x1 , x2 ∈ R, Consider f (x1)= f (x2)⇒x1x12+1=x2x22+1⇒x1x22+x1=x2x12+x2⇒x1x22+x1−x2x12−x2=0⇒x1x2(x2−x1)+(x1−x2)=0⇒(x1−x2)(x1x2−1)=0⇒x1=x2 or x1x2=1⇒x1=x2 or x1=1x2∴f is not one−one.
Let y=xx2+1⇒yx2+y=x⇒yx2−x+y=0 ......[1]Since x can take all real values,the discriminant D for [1] satisfiesD≥0⇒1−4y2≥0⇒4y2−1≤0⇒y∈(−1 2, 12]∴ Range (f)=(−1 2, 12]Since Range≠Co−domain,f is into.