The function f:R→R is defined by f(x)=cos2 x+sin64 x. Then, f(R) =
[34,1]
Given:
⇒f(x)=cos2 x+sin4 x⇒f(x)=1−sin2 x+sin4 x⇒f(x)=(sin2 x−12)2+34
The minimum value of f(x) is 34
Also,
sin2 x≤1⇒sin2 x−12≤12⇒(sin2 x−12)2≤14⇒(sin2 x−12)2+34≤14+34⇒f(x)≤1
The maximum value of f(x) is 1.