The function f(x)=2x3−9x2+12x+29 is monotonically decreasing function, when
Differentiate the given function f(x)=2x3−9x2+12x+29.
f′(x)=6x2−18x+12
Put f′(x)=0, then,
6x2−18x+12=0
x2−3x+2=0
x2−2x−x+2=0
x(x−2)−1(x−2)=0
(x−1)(x−2)=0
x=1,2
At x=1, the value of given function becomes,
f(1)=2(1)3−9(1)2+12(1)+29
=34
At x=2, the value of given function becomes,
f(2)=2(2)3−9(2)2+12(2)+29
=33
Therefore, this shows that the given function decreases at x<2.