The correct option is A x=−2 only
f(x)=2x3−3x2−36x+2
f′(x)=6x2−6x−36 .... (1)
For critical points:
f′(x)=0
⇒6x2−6x−36=0
⇒x2−x−6=0
(x−3)(x+2)=0
x=3,−2
⇒f′′(x)=12x−6
At x=3
f′′(x)=30>0
Hence x=3 point of minima.
at x=−2
f′′(−2)=−30<0
x=−2 is point of maxima