The correct options are
A decreasing in (π2,3π2)
B decreasing in (π2,π)
C increasing in (−π2,π2)
We have, f (x)=4 sin3 x–6 sin2 x+12 sin x+100∴f'(x)=12 sin2 x cos x−12 sin x cos x +12 cos x⇒f'(x)=12 cos x (sin2 x−sin x+1)⇒f'(x)=12 cos x (sin2 x+(1−sin x)]Now, sin2 x≥0 and 1−sin x≥0∴sin2 x+(1−sin x)≥0∴Sign of f'(x) depends upon cos x.∵cos x is positive when x∈(−π2,π2) and negative when x∈ (π2,π) or x∈ (π2,3π2).∴f(x) is increasing function when x∈(−π2,π2) and decreasing function when x∈ (π2,π) or x∈ (π2,3π2).