The correct option is A non differentiable at x=0
Given : f(x)={xsin(lnx2), x≠00,x=0
For continuity,
R.H.L=limx→0+xsin(lnx2)=0 (∵sinθ∈[−1,1])L.H.L.=limx→0−xsin(lnx2)=0⇒f(0−)=f(0+)=f(0)=0
Hence, f(x) is continuous at x=0
For differentiability,
f′(0+)=limh→0+f(h)−f(0)h⇒f′(0+)=limh→0+hsin(lnh2)−0h⇒f′(0+)=limh→0+sin(lnh2)⇒f′(0+)=Not defined
Similarly, L.H.D. is also not defined
Hence, f(x) is not differentiable at x=0