The correct option is C Maximum at x=1
We have
f(x)=∫x1[2(t−1)(t−2)3+3(t−1)2(t−2)2]dt
=∫x1(t−1)(t−2)2[5t−7]dt
⇒f′(x)=(x−1)(x−2)2(5x−7)
for max. or min. f′(x)=0⇒x=1,2,75
Now f′′(x)=(x−2)2(5x−7)+5(x−1)(x−2)2+2(x−2)(x−1)(5x−7)
⇒f′′(0)<0,f′′(7/5)>0 and f′′(2)=0
Hence f(x) attains its maximum at x=1