The correct option is B Continuous at x=1 but not differentiable at x=2
f(x)=⎧⎪⎨⎪⎩5x−4for 0<x≤14x2−3xfor 1<x<23x+4for x≥2
f(1−)=1; f(1+)=1; f(1)=1
f(2−)=10; f(2+)=10; f(2)=10
Thus continuous at x=1,2
Now,
f′(x)=⎧⎪⎨⎪⎩5for 0<x≤18x−3for 1<x<23for x≥2
f′(1−)=5; f′(1+)=5
f′(2−)=13; f′(2+)=3
Thus non differentiable at x=2