The function
f(x)={|x−3|,x≥1x24−3x2+134,x<1,
is
differentiable at x=1
Here, f(x)={|x−3|,x≥1x24−3x2+134,x<1
∴ RHL at x=1,limh→0|1+h−3|=2
LHL at x=1,limh→0(1−h)24−3(1−h)2+134=2∴f(x) is continuous at x=1Again, f(x)=⎧⎪
⎪⎨⎪
⎪⎩−(x−3),1≤x<3(x−3),x≥3x24−3x2+134,x<1∴f′(x)=⎧⎪
⎪⎨⎪
⎪⎩−1,1≤x<31,≥3x2−32,x<1
∴RHD at x=1⇒−1LHD at x=1⇒−1] differentiable at x=1.
Again,RHD at x=3⇒1LHD at x=3⇒−1] not differentiable at x=3.