The correct option is D Continuous nor derivable at x=2
We have
limx→2−f(x)=limh→0f(2−h)=limh→0(2−h)2+(−2+h)2
⇒limx→2−f(x)=3+(−2)2=7
limx→2+f(x)=limh→0f(2+h)=limh→0(2+h)2+(−2−h)2
limx→2+f(x)=4+(−3)2=13
clearly, limx→2−f(x)≠limx→2+f(x)
so, f(x) is discontinuous at x=2
Consequently, it is not differentiable at x=2