The function f(x)−p[x+1]+q[x−1], where is the greatest integer function is continuous at x =1, if
f(x)−p[x+1]+q[x−1] and f(1)=p[1+1]+q[0]=2p
This functionwill be continuous at x=1, then L limx→1f(x)=Rlimx→1f(x)=f(1)
⇒limh→0f(1−h)−limh→0f(1+h)−f(1)
⇒limh→0p[1−h+1]+q[1−h−1]
⇒limh→0p[1+h+1]+q[1+h−1]−f(1)
⇒limh→0p[2−h]+q[−h]−limh→0p[2+h]+q[h]=f(1)
⇒limh→0p(1−h)+q(−h−1)−limh→0[p(1+h)+q(h−1)]−2p
⇒p−q=2p⇒p+q=0.