The function fx=tan-1sinx+cosx is an increasing function in
π4,π2
-π2,π4
0,π2
-π2,π2
Find the interval in which the given function is increasing
We know that a function fx is increasing then f'x>0
fx=tan-1sinx+cosx⇒f'x=11+sinxcosx2cosx-sinx⇒f'x=cosx-sinx1+sin2x⇒f'x=-2sin2xcos2x⇒f'x=-sin4x
For increasing function f'x>0
For -π2<x<π4,cosx>sinx
y=fx is increasing in -π2,π4
Hence, option B is correct.