The function fx=x+1x has
A local maxima at x=1 and a local minima at x=-1
A local minima at x=1 and a local maxima at x=-1
Absolute maxima at x=1 and absolute minima at x=-1
Absolute minima at x=1 and absolute maxima at x=-1
Find the local minima and local maxima:
Given function, fx=x+1x
For critical point f'x=0
For local maxima f''x<0 and f''x>0
Now
f'x=1-1x2⇒1-1x2=0⇒x2-1=0⇒x2=1⇒x=±1f''x=2x3f''1=2f''-1=-2
Therefore local minima at x=1 and a local maxima at x=-1
Hence, the correct option is B.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2