The function f(x)=x+sinx has
A minimum but no maximum
A maximum but no minimum
Neither maximum nor minimum
Both maximum and minimum
Explanation for the correct option.
f(x)=x+sinx
f’(x)=1+cosx
Now, f'(x)=0
⇒1+cosx=0
⇒cosx=-1
⇒x=π
Now, f''(x)=-sinx
⇒f''(π)=-sin(-π)
⇒f''(π)=0
∵f''(π)=0, there are no maxima or minima.
Hence, option C is correct.