2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Monotonicity in an Interval
The function ...
Question
The function f(x) = x
x
decreases on the interval
(a) (0, e)
(b) (0, 1)
(c) (0, 1/e)
(d) none of these
Open in App
Solution
(c) (0, 1/e)
Given
:
f
x
=
x
x
Applying log with base
e
on both sides, we get
log
f
x
=
x
log
e
x
f
'
x
f
x
=
1
+
log
e
x
f
'
x
=
f
x
1
+
log
e
x
=
x
x
1
+
log
e
x
For
f
(
x
) to be decreasing, we must have
f
'
x
<
0
⇒
x
x
1
+
log
e
x
<
0
Here
,
logaritmic
function
is
defined
for
positive
values
of
x
.
⇒
x
x
>
0
⇒
1
+
log
e
x
<
0
Since
x
x
>
0
,
x
x
1
+
log
e
x
<
0
⇒
1
+
log
e
x
<
0
⇒
log
e
x
<
-
1
⇒
x
<
e
-
1
∵
l
og
a
x
<
N
⇒
x
<
a
N
for
a
>
1
Here
,
e
>
1
⇒
log
e
x
<
-
1
⇒
x
<
e
-
1
⇒
x
∈
0
,
e
-
1
So,
f
(
x
)
is decreasing on
0
,
1
e
.
Suggest Corrections
0
Similar questions
Q.
f
(
x
)
=
x
l
o
g
e
x
,
x
≠
1
, is decreasing in interval
Q.
The function
f
(
x
)
=
2
x
2
−
1
x
4
,
x
>
0
, decreases in the interval