The correct option is A No local extremum
Using necessary conditions for maxima-minima
∂f∂x=2xy−3y+1=0 ...(1)
∂f∂y=x2−3x+2=0 .... (2)
On solving (1) & (2) we get x=1,y=1 & x=2,y=−1
So P1(1,1)andP2(2,−1) are the critical points
Now, At (1,1) and (2,−1); value of rt−s2<0
i.e., [∂2f∂x2×∂2f∂y2]−[∂2f∂x∂y]2<0
⇒ BothP1 & P2 are saddle points
So no local extremum