The function is defined by f(x)={k x2, if x≤23, if x>2
Here, f(x)={k x2, if x≤23, if x>2
LHL=limx→2−f(x)=limx→2−(kx2).
Putting x=2-h as x→2− when h→0
limh→0k(2−h)2=limh→0k(4+h2−4h)=4k
RHL=limx→2+f(x)=limx→2+(3)=(3).
Also, f(2) = k × (2)^2=4k [∴f(x)=kx2]
Since, f(x) is continuous at x=2.
∴ LHL = RHL=f(x) ⇒4k=3⇒k=34