The function is defined by f(x) = {kx+1,if x≤πcos x, if x>π at x = π.
Here, f(x) = {kx+1,if x≤πcos x, if x>π
LHL = limx→π−f(x)=limx→π−(kx+1)
Putting x=π-h as x→π− when h→0
∴limh→0 k(π−h)+1=limh→0 kπ−kh+1=kπ+1
RHL = limx→π+f(x)=limx→π+cosx.
Putting x=π-h as x→π+ when h→0
∴limh→0 cos(π−h)=limh→0 −cos h=−1
Also, f(π) = (kπ)+1[∴(x)=kx+1]
∴ Since, f(x) is continuous at x=π.
∴LHL=RHL=f(π)⇒k(π)+1=−⇒k=−2π