The function is defined by f(x) ={Kx=1, if x≤53x−5, if x>5 at x = 5.
Here, f(x) ={Kx+1, if x≤53x−5, if x>5
LHL = limx→5−f(x)=limx→5−λ(kx+1)
Putting x=5-h as x→5− when h→0
∴limh→0=[k(5−h)+1]limh→0[5k−kh+1]=5k+1
RHL = limx→5+f(x)=limx→5+λ(kx+1)
Putting x=5-h as x→5+ when h→0
∴limh→0=[3(5−h)−5]limh→0[10+3h]=10
Also, f(x)=5k+1 [∴ f(x)=kx+1]
Since, f(x) is continuous at x = 5.
∴LHL=RHL=f(5)⇒5k+1=10⇒k=95