The correct option is A (3,4)
f′(x)=2x−3−2x+6=2x−3−2(x−3)=2.1−(x−3)2x−3
⇒f′(x)=−2.x2−6x+8x−3=−2.(x−2)(x−4)x−3
For f(x) to be increasing, f′(x)>0
⇒(x−2)(x−4)x−3<0⇒x∈(−∞,2)∪(3,4)
Also for log(x−3) to be defined x−3>0⇒x>3
Hence interval of increasing is (3,4)