The correct options are
A for all value of A, B and C(C≠0)
B A=B, C=2B
C A=−B, C=2B
For representing SHM, the sine and cosine functions should have linear power.
∴x=A sin2ωt+Bcos2ωt+C sin ωt cosωt or
x=A2(2sin2ωt)+B2(2cos2ωt)+C2(2sin ωt cosωt)
or
x=A2(1−cos2ωt)+B2(1+cos2ωt)+C2sin(2ωt)
(a) For A=0,B=0,x =C2 sin(2ωt)
The equation represents SHM. The option (a) is correct.
(b) If A=B,C=2B,x=B+Bsin2ωt
The equation represents SHM.
The option (b) is correct.
(c) A=−B,C=2B,
∴x=Bcos2ωt+Bsin2ωt
or x=B(cos2ωt+sin2ωt)
Two SHM's are superimposed to give another SHM.
The option (c) is correct.
(d) A=B,C=0 ∴x=A
This equation does not represent SHM. Hence options (a), (b) and (c) are correct.