The function y=e√x+e−√x, then xy′′+12y′=
y1=e√x(12√x)−e−√x(12√x) y′=12√x(e√x−e−√x) y′′=12√x(e√x2√x+e−√x2√x)+ −14(x)32(e√x−e−√x) y′′=y4x−y12x
xy′′+y′=y4
x – 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1