The function y=f(x) is the solution of the differential equation dydx+xyx2−1=x4+2x√1−x2 in (-1, 1) satisfying f(0) =0. Then ∫√32−√32f(x)d(x) is
Given D.E. can be written as
dydx−x1−x2y=x4+2x√1−x2
If e∫−x1−x2dx=e+12log(1−x2)=√1−x2
∴ Solution is given by
y√1−x2=∫√1−x2.x4+2x√1−x2dxy√1−x2=x55+x2+cf(0)=0⇒At x=0,y=0∴c=0∴y√1−x2=x55+x2
or y=f(x)=x55+x2√1−x2
∴ I=∫√32−√32x55+x2√1−x2dx=2∫√320x2√1−x2dx(∵x5√1−x2is odd)
put x=sinθ⇒dx=cosθdθ
∴I=2∫π30sin2θdθ=∫π30(1−cos2θdθ)
=(θ−sin2θ2)π30=π3−√34