The correct option is
A increases in
(0,1) but decreases in
(1,2)Giveny=√2x−x2By differentiating both side w.r.t x we getdydx=12√2x−x2×(2−2x)=1−x√2x−x2Here, dydx is defined for2x−x2>0i.e, 0<x<2Now, dydx>0when 1−x>0(∵ √2x−x2 is always positive)⇒x<1∴ Given function increases in 0<x<1And dydx<0When 1−x<0i.e. x>1
Thus, y decreases in 1<x<2 i.e. (1,2)
Hence, option A is correct.