The fundamental period of the function f(x)=3+2sin{(πx+2)3} is
Open in App
Solution
We have, f(x)=3+2sin{(πx+2)3}
Rearranging, we get f(x)=3+2sin{π3x+23}
The period of sin function is 2π.
The given function is of the form af(bx+c)+d.
Hence, the fundamental period of f(x) =2π|b|=2ππ3=6