f(x)=[x]+[2x]+[3x]+⋯+[nx]−n(n+1)2x,
∵[x]+{x}=x
f(x)=x−{x}+2x−{2x}+3x−{3x}+⋯+nx−{nx}−n(n+1)2x
f(x)=x(1+2+3+⋯+n)−n(n+1)x2−({x}+{2x}+{3x}+⋯+{nx})
f(x)=xn(n+1)2−n(n+1)2x−({x}+{2x}+{3x}+⋯+{nx})
f(x)=−({x}+{2x}+{3x}+⋯+{nx})
We know that period of {x} is 1
Hence, period of f(x) is
L.C.M.(1,12,13,…,1n)
=L.C.M.(1,1,…,n times)H.C.F.(1,2,3,…,n)=1