Given equation: cosx+sinx=√2
⇒sinx+cosx=√2
Comparing with the standard equation asinx+bcosx=c,
a=1≠0;b=1≠0;c=√2;
c√a2+b2=√2√12+12=√22=1
∴−1≤c√a2+b2≤1, which signifies the given eqaution has a valid solution.
Divide the equation by √a2+b2=√2.
⇒1√2sinx+1√2cosx=√2√2
Here, the auxiliary angle is π4.
Substitute cosπ4=1√2,sinπ4=1√2
⇒cosπ4sinx+sinπ4cosx=1
Apply sin(A+B)=sinAcosB+cosAsinB
⇒sin(x+π4)=1=sinπ2
The general solution is x+π4=nπ+(−1)nπ2,n∈Z
⇒x=nπ−π4+(−1)nπ2,n∈Z
⇒x=(4n−1)π4+(−1)nπ2,n∈Z