The correct option is A (6n+1)π6+(−1)nπ2,n∈Z
Given equation: √3sinx−cosx=2
Comparing with the standard equation asinx−bcosx=c,
a=√3≠0;b=3≠0;c=2;
c√a2+b2=2√(√3)2+12=2√4=1
∴−1≤c√a2+b2≤1, which signifies the given eqaution has a valid solution.
Divide the equation by √a2+b2=2.
⇒√32sinx−12cosx=22
Here, the auxiliary angle is π6.
Substitute cosπ6=√32,sinπ6=12
⇒cosπ6sinx−sinπ6cosx=1
Apply sin(A−B)=sinAcosB−cosAsinB
⇒sin(x−π6)=1=sinπ2
The general solution is x−π6=nπ+(−1)nπ2,n∈Z
⇒x=nπ+π6+(−1)nπ2,n∈Z
⇒x=(6n+1)π6+(−1)nπ2,n∈Z