wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of 3tan(θ15)=tan(θ+15) is:

A
θ=nπ4+(1)nπ2;nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
θ=nπ2+(1)nπ4;nZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
θ=nπ4+(1)nπ8;nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θ=nπ4+(1)nπ4;nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B θ=nπ2+(1)nπ4;nZ
The given equation is 3tan(θ15)=tan(θ+15)
tan(θ+15)tan(θ15)=31
Using componendo and dividendo,
tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=3+131=2

sin(θ+15)cos(θ+15)+sin(θ15)cos(θ15)sin(θ+15)cos(θ+15)sin(θ15)cos(θ15)=2

sin(θ+15)cos(θ15)+cos(θ+15)sin(θ15)sin(θ+15)cos(θ15)cos(θ+15)sin(θ15)=2

Using sinAcosB+cosAsinB=sin(A+B)
and
sinAcosBcosAsinB=sin(AB)

sin(θ+15+θ15)sin(θ+15(θ15))=2
sin2θsin30=2
sin2θ=1
We know that
sinθ=sinαθ=nπ+(1)nα;nZ

We also know that sinπ2=1
So we can write,
2θ=nπ+(1)nπ2;nZ

θ=nπ2+(1)nπ4;nZ



flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon