The correct option is B θ=nπ2+(−1)nπ4;n∈Z
The given equation is 3tan(θ−15∘)=tan(θ+15∘)
⇒tan(θ+15∘)tan(θ−15∘)=31
Using componendo and dividendo,
⇒tan(θ+15∘)+tan(θ−15∘)tan(θ+15∘)−tan(θ−15∘)=3+13−1=2
⇒sin(θ+15∘)cos(θ+15∘)+sin(θ−15∘)cos(θ−15∘)sin(θ+15∘)cos(θ+15∘)−sin(θ−15∘)cos(θ−15∘)=2
⇒sin(θ+15∘)cos(θ−15∘)+cos(θ+15∘)sin(θ−15∘)sin(θ+15∘)cos(θ−15∘)−cos(θ+15∘)sin(θ−15∘)=2
Using sinAcosB+cosAsinB=sin(A+B)
and
sinAcosB−cosAsinB=sin(A−B)
⇒sin(θ+15∘+θ−15∘)sin(θ+15∘−(θ−15∘))=2
⇒sin2θsin30∘=2
⇒sin2θ=1
We know that
sinθ=sinα⇒θ=nπ+(−1)nα;n∈Z
We also know that sinπ2=1
So we can write,
⇒2θ=nπ+(−1)nπ2;n∈Z
⇒θ=nπ2+(−1)nπ4;n∈Z