The correct option is A (2n+1)π4
4sin2x+tan2x+cosec2x+cot2x−6=0⇒(2sinx)2+(cosecx)2−4+(tanx)2+(cotx)2−2=0
⇒(2sinx−cosecx)2+(tanx−cotx)2=0
Which is possible when
⇒2sinx−cosecx=0 and tanx=cotx
⇒sin2x=12 and tan2x=1
⇒sinx=±1√2 and tanx=±1⇒x=π4,3π4,5π4,7π4,⋯
∴x=(2n+1)π4, n∈Z