The general solution of 8cosx⋅cos2x⋅cos4x=sin6xsinx is
A
(2n+1)π14,n∈Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
{nπ}∪{(2n+1)π14},n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2n+1)π7,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nπ7,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(2n+1)π14,n∈Z 8cosx⋅cos2x⋅cos4x=sin6xsinx sinx≠0 Now, ⇒8cosx⋅sinx⋅cos2x⋅cos4x−sin6x=0⇒4sin2x⋅cos2x⋅cos4x−sin6x=0⇒2sin4x⋅cos4x−sin6x=0⇒sin8x−sin6x=0⇒2cos7xsinx=0⇒cos7x=0(∵sinx≠0)⇒7x=(2n+1)π2,n∈Z∴x=(2n+1)π14,n∈Z