The correct option is B {2nπ}∪{(4n+1)π6},n∈Z
cosx+sinx=cos2x+sin2x⇒cosx−cos2x−sin2x+sinx=0⇒(cosx−cos2x)−(sin2x−sinx)=0⇒2sin3x2sinx2−2cos3x2sinx2=0⇒sinx2(sin3x2−cos3x2)=0⇒sinx2=0 or sin3x2−cos3x2=0⇒x2=nπ⇒x=2nπ,n∈Zsin3x2−cos3x2=0⇒sin3x2=cos3x2⇒tan3x2=1⇒3x2=nπ+π4⇒x=13(2nπ+π2)⇒x=(4n+1)π6,n∈Z∴x={2nπ}∪{(4n+1)π6},n∈Z