The correct option is A ey=ex−1+c.e−ex
dydx=ex−y(ex−ey)Rewaiting,dydx=e2x⋅e−y−exdydx+wx=e2x⋅e−yDividingbye−y,ey(dydx)+ex⋅ey=e2xputey+zsothat,ey(dydx)=dzdxwegetdzdx+ex⋅z=e2xI.F.=e∫exdxthen,z⋅eex=∫e2x⋅eex+c=∫ex⋅eex⋅exdx+c⇒∫tetdt+c(puutingex=tsothatexdx=dt)⇒t⋅et−(1−et)dt+c(byparts)⇒tet−et=et(t−1)+c⇒ey⋅ex=eex(ex−1)+c⇒ey=ex−1+ce−exz=ex&t=ex