The general solution of dydx√1+x+y=x+y−1, is
(where c is constant of integration and log has natural base ′e′)
A
2[√1+x+y+13log∣∣√1+x+y−1∣∣−43log∣∣√1+x+y+2∣∣]=x+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3[√1+x+y+12log∣∣√1+x+y−2∣∣−43log∣∣√1+x+y+5∣∣]=x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2[√x+y−1+13log∣∣√x+y−1−1∣∣+43log∣∣√1+x+y+2∣∣]=x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3[√x+y−1+12log∣∣√x+y−1−2∣∣−43log∣∣√1+x+y+5∣∣]=x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2[√1+x+y+13log∣∣√1+x+y−1∣∣−43log∣∣√1+x+y+2∣∣]=x+c Putting √1+x+y=v, we get ⇒x+y−1=v2−2 1+dydx=2vdvdx
Then the given equation transformed to (2vdvdx−1)v=v2−2 ⇒dvdx=v2+v−22v2 ⇒∫2v2v2+v−2dv=∫dx ⇒2∫[1+13(v−1)−43(v+2)]dv=∫dx ⇒2[v+13log|v−1|−43log|v+2|]=x+c where v=√1+x+y ∴2[√1+x+y+13log∣∣√1+x+y−1∣∣−43log∣∣√1+x+y+2∣∣]=x+c