The general solution of differential equation dydx+y sec x=tan x(0<x<π2) is
y(sec x + tan x) = sec x + tan x - x + c
y(sec x - tan x) = sec x + tan x + x + c
y(sec x - tan x) = sec x - tan x - x + c
y(sec x + tan x) = sec x - tan x - x + c
I.F = (secx + tanx)
G.S is y(secx + tanx) = secx + tanx – x + C