wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of equation
sinx3sin2x+sin3x=cosx3cos2x+cos3x is-

A
nπ+π8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ2+π8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2nπ+cos1(13)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2nπ+cos1(32)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B nπ2+π8
sinx3sin2x+sin3x=cosx3cos2x+cos3x
sinx6sinxcosx+3sinx4sin2x=cosx
Given
sinx3sin2x+sin3x=cosx3cos2x+cos3x
sin3x+sinx3sin2x=cos3x+cosx3cos2x
2sin2xcosx3sin2x=2cos2xcosx3cos2x
2sin2xcosx2cos2xcosx=3sin2x3cos2x
2cosx(sin2xcos2x)=3(sin2xcos2x)
(2cosx3)(sin2xcos2x)=0
cosx=32, or sinx=cos2x
Impossible tan2x=1
tan2x=tanπ4
2x=xπ+π4
x=xπ2+π8
Hence, Genral solution is x=xπ2+π8

1073162_1183460_ans_29725e74d479468a92be9234bb712883.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon