The general solution of dydx+ytanx=secx is
(a) y secx=tanx+C
(b) y tanx=secx+C
(c) tanx=y tanx+C
(d) x secx=tany+C
Given differential equation is
dydx+y tanx=secx
which is a linear differential equation
Here, P= tanx, Q secx
∴IF=e∫tanxdx=elog|secx|=secx
The general solution is
y.secx=∫secx.secx+C⇒y.secx=∫sec2xdx+C⇒y.secx=tanx+C