The correct option is B nπ2+π8 where nϵI
Given equation is
sinx−3sin2x+sin3x=cosx−3cos2x+cos3x
(sinx+sin3x)−3sin2x=(cosx+cos3x)−3cos2x
(2sin2xcosx−3sin2x)−(2cos2xcosx−3cos2x)=0
sin2x(2cosx−3)−cos2x(2cosx−3)=0
⇒(sin2x−cos2x)(2cosx−3)=0
cosx=32
which is not possible
sin2x=cos2x
tan2x=1
tan2x=tanπ4
2x=nπ+π4
⇒x=nπ2+π8,n∈I