The general solution ofsinx-3sin2x+sin3x=cosx-3cos2x+cos3x.
Given:
sinx–3sin2x+sin3x=cosx–3cos2x+cos3x.(sinx+sin3x)–3sin2x=(cosx+cos3x)–3.cos2x2.sin2xcosx–3.sin2x=2.cos2xcosx–3.cos2xsin2x(2cosx–3)=cos2x(2cosx–3)⇒sin2x=cos2x⇒tan2x=1⇒2x=nπ+π4⇒x=nπ2+π8 Note:cosx+cosy=2cosx+y2cosx-y2sinx+siny=2sinx+y2cosx-y2cos(-x)=cosx
Hence, the general solution ofsinx-3sin2x+sin3x=cosx-3cos2x+cos3x is x=nπ2+π8