The general solution of sinθ+sin2θ+sin3θ+sin4θ=0?
Given,
sinθ+sin2θ+sin3θ+sin4θ=0
By rearranging the expression, we get
(Sinθ+Sin3θ)+(sin2θ+Sin4θ)=0
(sinθ+sin3θ)+(sin2θ+sin4θ)=02.sin2θ.cosθ+2.sin3θ.cosθ=02.cosθ(sin2θ+sin3θ)=04.cosθ.sin5θ2.cosθ2=0
cosθ=0=cosπ2,θ=(n+12)π cosθ2=0=cosπ2θ2=n+12πθ=(2n+1)π sin5θ2=0=sin05θ2=nπθ=2nπ5
Hence, the general solution of sinθ+sin2θ+sin3θ+sin4θ=0 as shown above.
Find the general solution of the equation sin mx+sin nx=0
Or
Find the general solution of the equations sin2x+sin4x+sin6x=0
The general solution of sin = 0 is
The general solution of 2cos 2x + 1 = 0