The general solution of sinx–3sin2x+sin3x=cosx–3cos2x+cos3x is
nπ+π8
nπ2+π8
(-1)nnπ2+π8
2nπ+cos-132
Find the general solution of the given expression
Given, sinx–3sin2x+sin3x=cosx–3cos2x+cos3x
⇒(sinx+sin3x)-3sin2x=(cosx+cos3x)-3cos2x⇒2sin2xcosx-3sin2x=2cos2xcosx-3cos2x∵sinC+sinD=2sinC+D2cosC-D2&cosC+cosD=2cosC+D2cosC-D2⇒sin2x(2cosx-3)=cos2x(2cosx-3)⇒sin2x=cos2x⇒sin2xcos2x=1⇒tan2x=1∵sinθcosθ=tanθ⇒tan2x=tanπ4∵tanπ4=1⇒2x=nπ+π4⇒x=nπ2+π8
Hence, option (B) nπ2+π8, is the correct answer.