(√3−1)sinθ+(√3+1)cosθ=2
Divide the entire equation 2√2, we get
⇒(√3−12√2)sinθ+(√3+12√2)cosθ=1√2
⇒sin15°sinθ+cos15°cosθ=1√2
[∵sin15°=√3−12√2,cos15°=√3+12√2]
⇒cosθ.cos15°+sinθ.sin15°=1√2
we know that,
⇒cos(A−B)=cosA.cosB+sinA.sinB
and cos45°=1√2
Using the above results we can reduce the last step as
⇒cos(θ−15°)=cos45°
Again, we know that the general solution of the equation cosθ=cosα is given as, θ=2xπ±α x∈Z
∴cos(θ−15°)=cos45°
θ−15°=2xπ±45°
θ=2xπ+45°+15°
∴ the general solution is
⇒θ=2nπ+60° or θ=2nπ−30°
⇒θ=2nπ+π3 or θ=2nπ−π6
Hence, solved.